Astro215hf CMB Experiments, Surveys and Analysis Lecture 3

Clem Pryke Feb 16 2016

History of CMB Anisotropy Results

- As soon as it was established that there is a CMB it was realized that there ought to be CMB anisotropy – the "seeds of large scale structure"
- The following is a very cool sequence of plot from Lyman Page (Princeton) showing the build up sensitivity to the temperature anisotropy over time.
- Gray boxes show the average of all available data at each epoch

First detection by COBE DMR in 1992 at large angular scales

Boomerang and Maxima were balloon based experiments

graphic: J. Gudmundsson

- Planck is the third space mission to observe the CMB: An ESA-led mission Launched 14 May 2009, mission completed Oct 2013
- Full sky maps produced in seven polarization-sensitive bands centered at 30,44,70,100,143,217,353 GHz to be released in 2015. Also intensity maps at 545 and 857 12

Planck full sky maps at 9 frequencies

Full sky coverage and 9 frequencies - but not as deep as BICEP2/Keck in any given region of the sky

Planck Temperature Spectrum

High Angular Resolution Experiments

South Pole Telescope (SPT) 10 meter diameter

Atacama Cosmology Telescope (ACT) 6 meter diameter

SPT Temperature Results

High ell TT in conjunction with Planck

Zoom in on an SPT map 50 deg² from 2500 deg² survey

CMB Anisotropy -Primordial and secondary anisotropy in the CMB

Point Sources - High-redshift

dusty star forming galaxies and Active Galactic Nuclei **Clusters** - High signal to noise SZ galaxy cluster detections as "shadows" against the CMB!

"First Order" Polarization of the CMB

- Density perturbations at last scattering produce anisotropy of the Total Intensity - T spectrum
- Material flowing (accelerating) along gradients in the density field
 - In local ref. frame see Doppler shift along flow direction versus across flow direction - quadrupole
 - Hence polarization aligned with gradient zero curl.
 - Since density perturbations produce the motion there is TE cross correlation.
- Given measurements of T spectrum, and standard cosmological model, can predict expected E and TE spectra
 - ...measuring E and TE is mainly a paradigm test

Characterizing the Sky Pattern

- Polarization is a (pseudo) vector pattern on the sky
 - Decompose into 2 scalar patterns which measure the "gradient" (E-mode) and "curl" (B-mode) of the

Q/U are "vector" components $\chi = \arctan 2(v, u) - \pi/2$ $E = +Q\cos 2\chi + U\sin 2\chi \leftarrow$ $B = -Q\sin 2\chi + U\cos 2\chi$ Local transform in Fourier space Non-local in map space

Why Use E/B Basis?

...with zero Bmode

B component

Theoretical Polarization Spectra

Hu et al astro-ph/0210096

Log Scale! Enormous experimental challenge!

DASI First Detection of CMB Polarization In 2002

DASI showed CMB *has* E-mode pol.

- B-mode was consistent with zero

Older Experiments which made CMB Pol Detections

QUaD

BICEP1

CBI

BOOMERANG

Planck has now provided full sky polarized maps at 7 frequencies

Given that Planck maps exist why make further suborbital measurements?

- Can achieve higher sensitivity quite easily on small patches of the full sky
- Can have higher angular resolution particularly with ground based experiments

Ground based limitation: Can't do high frequencies

Suborbital Limitation: Can't do full sky from a single site (or flight)

But full sky maps have been made from the ground (e.g. Haslam 408MHz using 2 sites)

High Angular Res Pol Experiments (2G)

The SPTpol camera

The ACTpol receiver

Low Res Pol Experiments - BICEP2 and Keck Array

Relentless observation of the CMB polarization from NSF's station at the

geographic South Pole

Dry, stable atmosphere, high altitude + 24h coverage of the Southern Sky

Keck

BICEP2

Compact cold refractive optics optimized for the angus scales of the potential inflationary signal

Superconducting phased antenna arrays

Focus on ~400 deg² patch = 1% of the sky

Published Deep Suborbital Polarization Maps To Date

ACTpol 275 sq deg arxiv:1405.5524

BICEP2/Keck 400 sq deg arxiv:1403.3985 and 1502.00643

SPTpol 100 sq deg arxiv: 1411.1042 and 1503.02315

Roughly scaled to indicate relative map sky coverage

POLARBEAR 25 sq deg arxiv:1403.2369

Published Deep Suborbital Polarization Maps To Date

	Q,U Map rms noise N [uK-arcmin]	Survey effective area A [deg ²]	Total Q+U Survey Weight W=2A/N ² [uK ⁻²]	Reference
POLARBEAR	6	24.5	5,000	arxiv:1403.2369
BICEP2	5.2	380	100,000	arxiv:1403.3985
ACTpol	15.8 to 24	276	5,000	arxiv:1405.5524
SPTpol	17@95 & 9@150	100	11,000	arxiv:1503.02315
BICEP2+Keck	3.4	400	360,000	arxiv:1510.09217
Planck 143 GHz (for reference)	70	41,000	60,000	

Caution: gauging relative performance of experiments using nominal detector counts can be misleading – also projections are often optimistic!

Survey weight: A quantity which is linear in number of detectors and integration time – i.e. difficulty of achieving Also linear in power spectrum noise error bar size

NB: Published results only – no projections!

CMB has higher fractional polarization than point source foregrounds – can push further down the damping tail in EE

High Res Experiments can measure EE damping tail

"Second Order" Polarization of the CMB

- Lensing by large scale structure between last scattering and us distorts the polarization pattern...
 - Mixes E into B to a small extent.
 - Called "Lensing B-modes" small angular scales
 - By measuring can constrain sum of neutrino masses and potentially reconstruct projected mass map...
- Gravity waves propagating through the primordial plasma at last scattering potentially add to all spectra...
 - Based on existing T data we know contribution small.
 - Called "Gravity Wave B-modes" large angular scales
 - Characterize amount using tensor/scalar ratio "r"

CMB Lensing

Lensing re-maps the CMB patterns introducing non-Gaussianity which can allows to reconstruct the projected mass map

High Res Experiments Can Do Lensing Reconstruction

Planck currently best – High res ground based can eventually do much better

Current BB Results

