The search for inflationary B-modes latest results from BICEP/Keck

Clem Pryke for the BICEP/Keck Collaboration – UCSD – Oct 22 2021

Motivation/Background

- Using the CMB and other data the LCDM cosmological paradigm has been developed – it works great and allows us to understand the development of the universe all the way back to a high energy state.
- However, LCDM leaves many unanswered questions such as the "horizon problem" and how the empirically simple conditions at the start of the plasma phase were set up.
- ≻Theory of "Inflation" added on the beginning of LCDM to explain.
- ➢ If it happened Inflation will have made a background of gravitational waves which will have imprinted a B-mode (curl) into the polarization pattern of the CMB.
- ➢We may be able to detect these if we can make a sensitive enough telescope – a wide range of inflation models exist – the simplest are already ruled out – more complex ones can produce *r* which is undetectably small...

CMB power spectra

BICEP/Keck Basic Experimental Strategy

 \rightarrow Small aperture telescopes (cheap, fast, low systematics) \rightarrow Target the 2 degree peak of the PGW B-mode

 \rightarrow Integrate continuously from South Pole

 \rightarrow Observe 1% patch of sky (smaller is actually better!)

 \rightarrow Scan and pair difference modulation

Foreground emission from our galaxy

The interstellar space within our galaxy contains cold dust grains which glow thermally in microwaves, and relativistic electrons which emit synchrotron radiation

Overcoming Polarized Foreground Contamination

Overcoming Polarized Foreground Contamination

The BICEP/Keck Telescopes

Telescope as compact as possible while still having the angular resolution to observe degree-scale features.

On-axis, refractive optics allow the entire telescope to rotate around boresight for polarization modulation.

Pulse tube cooler cools the optical elements to 4.2 K.

A 3-stage helium sorption refrigerator further cools the detectors to 0.27 K.

Mass-produced Superconducting Detectors

Transition edge sensor

Microstrip filters

BICEP/Keck Band Passes

The dry South Pole atmosphere provides excellent observing conditions most of the year.

The approx. 30% fractional bandpasses fit within atmospheric transmission windows straddled by oxygen and water lines.

In these windows, the atmosphere is quite transparent to microwaves.

The detector passbands are defined by a filter printed directly onto the focal plane wafers.

Why do this at the Pole?

South Pole CMB telescopes

- High and *dry* see out into space
- On Earth's rotational axis One day/night cycle per year
 - Long night makes for great quality data
- Good support infrastructure power, cargo, data comm
- Food and accommodation provided
- Even Tuesday night bingo...

Stage 2

BICEP2 (2010-2012)

Keck Array (2012-2019)

BICEP3 (2015-)

BICEP Array (2020-)

– 505 Degrees on sky

–505 Degrees on sky

Degrees on sky

South Pole Site

DSL

BICEP2 and Keck Array

BICEP2 x 5 =

BICEP2

Keck Array 2011-2019

The Keck Array

Keck

BICEP3 and BICEP Array

BICEP3 2016-present

BICEP3

BICEP Array 2020-present

BICEP3 x 4 =

BICEP Array

BICEP Array

Clem Pryke for The Bicep2 Collaboration

Raw Data - Perfect Weather

- Cover the whole field in 60 such scansets then start over at new boresight rotation
- Scanning modulates the CMB signal to freqs < 4 Hz

Raw Data - Worse Weather

Timestream PSDs

➤ Multipole 100 at 0.4Hz

Time

Add to the mix: Planck at 7 frequencies and WMAP at 2 frequencies

Analysis **Technique: Take** all possible autoand cross spectra between the BICEP/Keck, WMAP, and **Planck bands** (66 of them) and compare to model of CMB +foregrounds

Multicomponent parametric likelihood analysis

Take the joint likelihood of all the spectra simultaneously vs. model for BB that is the ΛCDM lensing expectation + 7 parameter foreground model + r

BK18 auto/cross spectra between: BICEP3 95GHz, **BICEP2/Keck** 150GHz, Keck 220GHz. and Planck 353GHz

Black lines are LCDM Red lines are LCDM+foreground

BK15 Noise Spectra and f_{sky} Effective

BK18 Noise Spectra and f_{sky} Effective

BK18 Noise Spectra and f_{sky} Effective

BKP arxiv/1502.00612

r_{.05} < 0.09

r_{.05} < 0.07

r_{.05} < 0.06

r_{.05} < 0.035

Per bandpower CMB component extraction

BK15 ell=80 bandpower noise/signal

BK18 ell=80 bandpower noise/signal

What limits BK18?

- BK18 mainline simulations with dust and lensing give $\sigma(r)=0.009$
- Running on simulations which contain no lensing gives $\sigma(r)=0.004$
- Running without foreground parameters on simulations where the dust amplitude is set to zero gives $\sigma(r)=0.007$
- Running without foreground parameters on simulations which have neither dust or lensing gives $\sigma(r)=0.002$

Bottom line: BK is already heavily lensing limited

gravitational waves

BICEP Array Under Construction

BICEP Array 2019-20 initial deployment

5

Three-month window during the Antarctic summer to perform:

- Keck Array demolition
- BA mount installation
- BA1 receiver assembly
- Full system integration

60,000 lbs of cargo, equivalent to 3 dedicated LC-130 Hercules flights to the South Pole.

30+ personnel:

- 2/3 scientists
- 1/3 contractors

BA1 instrumental highlights

Camera insert

192/300 TES detectors at 30/40 GHz.

Integrated in 12 shielded modules, each with a low-pass mesh filters.

Time-Domain multiplexed readout.

BA1 instrumental highlights

Optics

Alumina absorptive IR filter, AR-coated with laser-diced epoxy.

Internal absorptive baffling for scattering control.

Polyethylene lenses, AR-coated with expanded Teflon. 550mm clear aperture.

BA1 (30/40 GHz) installation

- The receiver reached baseline temperatures on Dec 30 2019. Excellent cryogenic performance.
- Small yield loss due to untested detector modules.
- Ran calibration campaign (Far-Field Beam Mapping, Far-Sidelobe Mapping).

First year BA1 40GHz temperature map

CMB temperature anisotropies from first year of observation

Re-observed Planck 44GHz

CMB temperature anisotropies from Planck LFI 4-year

First year BA1 40GHz temperature map

Scan-direction jackknife implies high S/N detection

Conclusions

- BICEP/Keck lead the field in the quest to detect or set limits on inflationary gravitational waves:
- Best published sensitivity to date
- > Best proven systematic control at degree angular scales
- > Adding 2016-18 data (from BK15 to BK18):
- > Goes from $r_{0.05}$ <0.07 to $r_{0.05}$ <0.036
- \succ For the first time no priors from other regions of sky
- \succ And we can keep going:
- ➢ BICEP Array mount and first receiver running
- Delensing in conjunction with SPT3G
- \succ Other things I can talk about:
- > Delensing technique (lensing template)
- E/B separation (matrix purification)
- Beam systematics and deprojection thereof
- Detailed beam measurements to predict undeprojected residual