Detection of B-mode Polarization at 150 GHz and Degree Angular Scales by BICEP2 and Keck Array

Modern cosmology in a nutshell:

Edwin Hubble

1) The universe is expanding. (Hubble, 1920s)
2) It was once hot and dense, like the inside of the Sun.
(Alpher, Gamow, Herman, 1940s)
3) You can still see the glow!

The Cosmic Microwave Background (Penzias \& Wilson, 1964)

Bob Wilson \& Arno Penzias 1978 Nobel Prize
\Rightarrow acceptance of the "HOT BIG BANG"

13.7 billion years

History of the Universe

Age of the Universe

History of the Universe

Age of the Universe

CMB Temperature Measurements / Inflation

CMB temperature anisotropy now measured over full range of angular scales.

Consistent with ^CDM paradigm(?) and constrains its parameters to sub percent accuracy.

Inflation "invented" in 1980s to explain facts about the Universe which were known or suspected.

Makes additional prediction of a background of gravitational waves (aka tensor modes) which will imprint a specific CMB polarization pattern...
\rightarrow so-called "smoking gun"
\rightarrow amplitude tells us the energy scale at which inflation ocurred

Why Inflation?

Solves the horizon problem: Why is the CMB nearly uniform? How do apparently causally disconnected regions of space get set to the same temperature?

Solves the flatness problem: Why is the net spatial curvature close to zero?

Explains the initial perturbation spectrum: Why was it close to flat power law?

Solves the monopole problem: Why do we not observe magnetic monopoles in the Universe today?

A volume much larger than our entire observable universe today was once a caussally connected sub atomic spec.

Any initial spatial curvature is
\longrightarrow diluted away to undetectabilty by the hyper expansion.

Equal amount of perturbations are injected at each step in the exponential expansion.

Monopoles are diluted away to undetectability.

CMB polarization: arises at last scattering from local radiation quadrupole

CMB polarization

Density Wave

Temperature
Pattern Seen by Electrons

Gravitational Wave

E-Mode Polarization Pattern

B-Mode Polarization Pattern

The State of B-mode Measurements last March

In simple inflationary gravitational wave models the

tensor-to-scalar ratio r

is the only parameter to the B-mode spectrum.

Before BICEP2: only upper limits from searches for Inflationary B-modes

BICEP1 limits translated to:

$$
r<0.7(95 \% C L)
$$

At high multipoles lensing B-mode dominant.

The BICEP2/Keck Postdocs

Winterovers BICEP2

ISteftan Richter

2010 Keck

2011

2012
Robert Schwarz

The BICEP2/Keck Graduate Students

2013

2014
Robert Schwarz

South Pole CMB telescopes

NSF's South Pole Station:
 A popular place with CMB Experimentalists!

Super dry atmosphere and 24 h coverage of low foreground sky. Also power, LHe, LN $2,200 \mathrm{~GB} /$ day, 3 square meals, and bingo night... xperimentalists.
保

.

BICEP2/Keck Experimental Concept

Observational Strategy

Go deep in a region of sky where galactic foregrounds are low

Observe at frequencies where the CMB is brightest with respect to:
Synchrotron emission (from high energy electrons) - falls with increasing freq

Thermal dust emission - rises with increasing freq
Foreground contamination of the B-mode power in clean regions previously projected to be equivalent to $r \leq \sim 0.01$.

Raw Data - Perfect Weather

Time 50 mins
elnod 1

$150 \mathrm{GHz} \times 10^{-3}$

Run 20120622C01_dk293, scan block 1; Rx: 0

p0 filt; pair-sum

elnod 2

$>$ Cover the whole field in 60 such scansets then start over at new boresight rotation
> Scanning modulates the CMB signal to freqs < 4 Hz

Raw Data - Worse Weather

Time 50 mins
elnod 1

$150 \mathrm{GHz}^{\times 1} 10^{-3}$

Run 20120622D01_dk293, scan block 1; Rx: 0

p0 filt; pair-sum

elnod 2

$>$ Scanning over lumpy atmosphere \rightarrow "clouds"
$>$ Pair difference still clean \rightarrow atmosphere is unpolarized

BICEP2 3-year Data Set

Clem Pryke for The Bicep2 Collaboration

Total Polarization

E-mode dominated pattern - no obvious curl component

B-mode Contribution

Apply purification operation to Q/U maps which leaves only B-modes (given all timestream filterings etc.)

B-mode Contribution

Stretch scale by factor 6 - see "swirly" B-mode

BICEP2 B-mode Power Spectrum

Pre-Planck Polarized Dust Foreground Projections

The BICEP2 region was chosen on the basis of extremely low unpolarized dust power.

Used various models of polarized dust emission to estimate dust power.

Result: All auto spectra were well below observed signal level. (and cross spectra consistent with zero.)

But considerable uncertainty in these models...

Fitting with Dust Projections Subtracted...

Probability that each of these models reflected reality was hard to assess.

DDM1 used all publicly available information from Planck. Polarization fraction here assumed $p=5 \%$. $p \sim 13 \%$ would explain the full excess under this model.

Adjust likelihood curve by subtracting the dust projection auto and cross spectra from our bandpowers:

Conclusions circa March 17 ${ }^{\text {th }} 2014$

BICEP2 data and upper limits from other experiments:

Most sensitive polarization maps ever made!

Power spectra perfectly consistent with lensed-^CDM except:
5.2σ excess in the B-mode spectrum at low multipoles!

Extensive studies and jackknife tests strongly argued against systematics as the origin

Data fit well to LCDM $+\mathrm{r}=0.2$ expectation

Foregrounds did not appear to be a large fraction of the signal...

Storm of Media Attention

$=$ Che detu Hork eimes

\qquad
 Bicep 2's ‘ripples' ad muscle to Big Bang
\qquad

IIIIIIIIIIII

PAPER

American Physical Society
$\underset{\text { physics }}{\text { APS }}$
Volume 112, Number 24

Actually not a lot of fun...

Developments last year

- Intense media and science community interest...
- Many early instrumental queries - faded away - everybody now seems to trust our measurements.
- Concerns about synchrotron - also faded away.
- But persistent concerns about dust...
- Mostly based on online pdf's of Planck talks
- In September we finally got some solid information from Planck about the actual level of polarized dust emission in the BICEP2 field (arxiv:1409.5738). Much higher than any of the projections...

Results from Joint analysis of BICEP2/Keck and Planck data

> In summer 2014 BICEP2/ Keck and Planck collaborations signed MOU to do a joint analysis of their data
> Data exchanged in late July
> Today reporting on results of this analysis as presented in paper arxiv:1502.00612 (now published by PRL)

B2 150 GHz T/Q/U maps of small sky patch

B2+Keck 150 GHz T/Q/U maps of small sky patch

Planck

graphic: J. Gudmundsson

- Planck is the third space mission to observe the CMB: An ESA-led mission Launched 14 May 2009, mission completed Oct 2013
- Full sky maps produced in seven polarization-sensitive bands centered at $30,44,70,(100,143,217), 353 \mathrm{GHz}$ (to be) released in 2015. Also intensity maps at 545 and 857 GHz .

Planck full sky maps at 9 frequencies

Full sky coverage and 9 frequencies - but not as deep as

Planck 353 GHz full sky maps in polarization

- 353 GHz polarized maps are dominated by Galactic dust emission

Compare BK 150 GHz (left) with Planck 353 GHz (right)

Dominated by LCDM E-modes

Compare BK 150 GHz (left) with Planck 353 GHz (right)

Noise small compared to signal
T maps same color stretch
Noise small compared to signal

Noise small compared to signal
Q/U maps x10 color stretch

Noise comparable to dust signal

What are the expectations for dust?

$>$ In the BK patch Planck's signal-to-noise on dust is limited even at 353 GHz .
$>$ However a series of Planck papers have investigated the spatial and frequency spectra of dust over the intermediate and high latitude sky:

Fig 2 of arxiv: 1409.5738

Dust BB spatial power spectra follow $\ell-0.42$ power law when averaging over large sky regions
$>$ No evidence of deviation from this behavior for small sky patches although s/n low

Fig 6 of arxiv:1409.5738

Spectral energy distribution of polarized dust emission follows modified blackbody model with $T=19.6 \mathrm{~K}$ and $\beta_{d}=1.59$
$>$ Seems to be remarkably uniform over the high latitude sky
\rightarrow Good news for component separation

Zoom in on BB

$>$ Correlation of 150 GHz and 353 GHz B-modes is detected with high signal-to-noise.
$>$ Scaling the cross-frequency spectrum by the expected brightness ratio ($\times 25$) of dust (right y-axis) indicates that dust contribution is comparable in magnitude to BICEP2/Keck excess over LCDM.

- Shape looks consistent with $\ell^{-0.42}$ power law expectation

Multi-component multi-spectral likelihood analysis

> Define "fiducial analysis" to use single- and cross-frequency spectra between BK 150 GHz and Planck 217\&353 GHz channels

- (Detail: for Planck single-frequency use detector set split cross spectrum)
> As addition to basic LCDM lensing signal include gravity wave signal (with amp r) and dust signal with amplitude A_{d} (specified at $\ell=80$ and 353 GHz)
- For dust SED use modified blackbody model and marginalize over range $\beta_{\mathrm{d}}=1.59 \pm 0.11$
$>$ Use 5 lowest BB bandpowers only $(20<\ell<200)$

Multi-component multi-spectral likelihood analysis

Dust is detected with 5.1σ significance

\uparrow
As expected dust and r are partially degenerate - reducing dust means more of the 150×150 signal needs to be r

Best fit model

BKxBK BB

BKxP217 BB

BKxP353 BB

Model:

$\mathrm{r}=0.05$
$\mathrm{~A}_{\mathrm{d}}=3.2, \beta_{\mathrm{d}}=1.60$
$\chi^{2} / \mathrm{dof}=41.0 / 28$
PTE $=0.05$

P217xP217 BB

* Real data
--- Model total w. 1 σ range
——— Lensed-LCDM
——tensors (r)
_ dust

> The maximum likelihood model has acceptable x^{2} (with the biggest contribution coming from P353xP353.)
> The BKxBK and BKxP353 spectra are both very well fit by the model.

Comparison of signal and noise levels

> The BICEP2/Keck noise is much lower than the Planck noise in the small sky patch observed
$>$ However dust is much brighter at 353 GHz and Planck detects it
$>$ The noise in the cross spectra is the geometric mean and a fairly tight constraint on dust amplitude is set

Current Conclusions

$>$ Last March BICEP2 reported detection of B-mode polarization in the CMB at 150 GHz well in excess of the standard model expectation

- This signal is confirmed by new data from the successor experiment Keck Array
> Last summer Planck released new information on the polarized emission from galactic dust which showed this might be due to dust emission.
> We have now done a joint analysis with Planck - The fundamental conclusion is that dust is detected at high significance, and $r<0.12$ at 95% confidence.
- Multi-component likelihood gives $\sigma(r) \sim 0.035-$ This is a very direct constraint on tensors!
- No significant evidence for $\mathrm{r}>0$. Currently $\mathrm{r}=0$ and $\mathrm{r}=0.1$ are at equal likelihood.
- There may yet be a gravitational wave signal, but if there is it must be considerably smaller than the full signal.
> Additionally, lensing B-modes are detected at 7.0σ significance
> Noise in P353 is the current limiting factor and to make further progress better data at frequencies other than 150 GHz is required

Results Coming soon - Keck 201495 GHz

For 2014 season two of the Keck array receivers switched out for 95 GHz

Comparison of signal and noise levels

Keck 201495 GHz achieved noise level

BICEP2 + Keck12+13 E-mode signal

Keck14 95 GHz E-mode signal

Reduction in amplitude with respect to 150 GHz due to increased beam size (which is uncorrected in these map plots)

New for 2015 - Keck220 and BICEP3

