Imaging the Cosmic Microwave Background With DASI

Clem Pryke Astrophysics in Antarctica May 2000 I will not be showing a DASI power spectrum this afternoon.

Outline

- Current CMB situation
- Why use an interferometer?
- Why do it at the south pole?
- DASI design
- DASI deployment
- Analysis in progress...

Current Situation

Where does DASI fit?

Why an Interferometer?

- Directly measures power spectrum of the sky.
- Intrinsically stable only correlated signals are detected.
- Designer can control angular range covered.

How DASI Works

Why at the South Pole?

- Low atmospheric moisture
- Atmosphere highly stable
- No Sun for 6 months of the year
- Fields remain at constant elevation angle
- Existing infrastructure and logistics

DASI/CBI Collaboration

- CBI at CalTech / Chile
- Steve Padin / Tony Readhead
- Tim Pearson, Martin Shepherd
- John Cartwright

- DASI UofC / South Pole (CARA)
- John Carlstrom / Mark Dragovan
- Bill Holzapfel, Erik Leitch, Clem Pryke
- Nils Halverson, John Kovac
- Ethan Schartman
- John Yamasaki / Gene Davidson

DASI Design

- Corrugated microwave feedhorns
- 26-36 GHz HEMT amplifiers cooled to 20K, downconvert to 2-12 GHz
- Passive filter splits into 10 x 1GHz bands
- Each band correlated to form 156 visibilities

Feedhorns

Receivers

Atmospheric Emission

HEMT Amplifiers

First stage FET

Receiver Control Card

DASI Mount

SIDE VIEW - EL = 45°

DASI Deployment

- Mount completed April 99 by Vertex Inc.
- Initial assembly and integration in EFI high bay.
- Moved out to parking lot July
- Disassembled for shipping August
- Arrived in Antarctica October
- Arrived at South Pole November

DASI at Vertex

DASI Leaves High Bay

Summer Testing

Arrival in Antarctica

Arrival at South Pole

Re-assembly

Lifting to Tower

Cover for Working

DASI at Sunset

Analysis in Progress

- System works well and is very stable
- Imaged astronomical object quickly
- For CMB ground signal is an issue

First Image

Ground signal is stable

$$\chi^{2} = \sum_{i=1}^{12} \frac{(x_{i} - \overline{x})^{2}}{\frac{7}{8}\sigma^{2}(x_{i})}$$

Synchrotron Map

Dust Map

Conclusion

- DASI is running, data is flowing
- Ground signals are an issue
- Things are looking up...

